Cilia born out of shock and stress.
نویسندگان
چکیده
Primary cilia are cell surface sensory organelles, whose dysfunction underlies various human genetic diseases collectively termed ciliopathies. A new study in The EMBO Journal by Villumsen et al now reveals how stress–response pathways converge to stimulate ciliogenesis by modulating protein composition of centriolar satellites. Better understanding of these mechanisms should bring us closer to identifying the cellular defects that underlie ciliopathies caused by mutations in centriolar satellite proteins. Centrioles are barrel-shaped structures with two distinct identities. In proliferating cells centrioles provide structural support for the centrosome, a key microtubule-organizing centre, whereas in quiescent cells centrioles are converted into basal bodies and promote the assembly of primary cilia. In centrosomes, centrioles are embedded in pericentriolar material (PCM), a dynamic structure responsible for microtubule nucleation. PCM proteins exhibit cell cycle-dependent localisation, achieved at least in part by the regulation of their transport. Centriolar satellites, dense fibrous granules frequently clustered around the interphase centrosome, have been implicated in microtubule-dependent protein transport to centrosomes (Kubo et al, 1999). In particular, PCM-1, the core constituent of centriolar satellites, is required for centrosomal accumulation of several PCM components (Dammermann and Merdes, 2002). Although the proteomic composition of satellites is still elusive, the growing list of satellite proteins includes CEP131/AZI1 (Staples et al, 2012), CEP290 (Stowe et al, 2012), Bardet-Biedl syndrome protein 4 (BBS4) and Oral facial digital syndrome protein (OFD1; Lopes et al, 2011). Mutations in OFD1, CEP290 and BBS4 cause ciliopathies (Kim et al, 2008), underscoring a functional link between satellites and ciliogenesis. So far, two roles have been proposed for satellites in cilia formation: First, in cycling cells they may serve to sequester essential ciliary proteins (Stowe et al, 2012). Second, upon initiation of the ciliogenesis programme, centriolar satellite components seem to promote the recruitment of specific ciliary proteins to basal bodies (Ferrante et al, 2006; Lopes et al, 2011; Stowe et al, 2012). In a new study in The EMBO Journal, Villumsen et al (2013) now describe how stress–response pathways conspire to control ciliogenesis. The authors observed that specific environmental stresses, such as ultraviolet light radiation (UV) or heat shock, but not ionizing radiation (IR), trigger rapid displacement of PCM-1, AZI1 and CEP290 from centriolar satellites. However, OFD1 remained associated with satellites, indicating that centriolar satellites persist despite UV-induced removal of PCM-1. This might come as some surprise, since PCM-1 depletion by RNA interference (RNAi) is thought to disrupt satellite integrity (Kim et al, 2008; Lopes et al, 2011); however, satellite loss upon PCM-1 RNAi may be a consequence of prolonged depletion of PCM-1, while acute PCM-1 displacement by stress might only ‘remodel’ centriolar satellites. It is also possible that not all satellites are created equal, and they do vary in protein composition (Kim et al, 2008; Staples et al, 2012). If so, UV-induced PCM-1 removal may disrupt some, but not all satellites. A good candidate regulator of centriolar satellite remodelling was the stress-activated MAP kinase p38, and indeed, Villumsen et al (2013) found p38 MAPK activity to be stimulated by both UV and heat shock but not IR in U2OS cells, mirroring those very stress pathways that also cause displacement of AZI1 and PCM-1 from satellites. Furthermore, p38 MAPK was essential for UV-induced dispersal of PCM-1 and AZI1. The authors then tested the hypothesis that stress-induced centriolar satellite remodelling could involve changes in the interactome of AZI1, and— consistent with an earlier proteomics study (Akimov et al, 2011)—identified PCM-1, CEP290 and the mindbomb E3 ubiquitin protein ligase 1 (MIB1) as the main AZI1 binding partners. GFP-MIB1 localized to centriolar satellites and mono-ubiquitylated AZI1, PCM-1 and CEP290 in cycling cells. In response to UV, both ubiquitylation of these proteins and MIB1 activity were reduced; notably, UVinduced MIB1 inactivation was independent of p38 MAPK activity, indicating that these two enzymes may act via distinct pathways (Figure 1A). What could be the purpose of MIB1-dependent ubiquitylation of these satellite proteins? It certainly does not seem to regulate subcellular targeting, as in MIB1-depleted cells, AZI1 and PCM-1 both localised normally to centriolar satellites and could still be displaced by UV. Instead, ubiquitylation seems to suppress the interaction between AZI1 and PCM-1, consistent with the observation that UV, a condition that also reduces their ubiquitylation, enhances the binding of AZI1 to PCM-1. PCM-1, CEP290 and AZI1 all participate in ciliogenesis (Kim et al, 2008; Wilkinson et al, 2009; Stowe et al, 2012), raising the possibility that MIB1 might also affect this The EMBO Journal (2013) 32, 3011–3013 www.embojournal.org
منابع مشابه
Primary cilia regulates the directional migration and barrier integrity of endothelial cells through the modulation of hsp27 dependent actin cytoskeletal organization.
Cilia are mechanosensing organelles that communicate extracellular signals into intracellular responses. Altered functions of primary cilia play a key role in the development of various diseases including polycystic kidney disease. Here, we show that endothelial cells from the oak ridge polycystic kidney (Tg737(orpk/orpk) ) mouse, with impaired cilia assembly, exhibit a reduction in the actin s...
متن کاملA finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow
The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...
متن کاملEffects of the stimulation of β2-adrenoceptors of the the basolateral amygdala on anxiety-like behaviors following electrical foot-shock stress in male rat
Introduction: The basolateral amygdala (BLA) is a key structure that integrated anxiety information. It is suggested that baso-lateral area of amygdala receives a dense norepinephrine innervation from the locus coeruleus nucleus. Furthermore, stress increased norepinephrine secretion in the BLA. In the present study, we examined the effects of the stimulation of β2-adrenoceptors in the BLA on a...
متن کاملSmall heat shock proteins are necessary for heart migration and laterality determination in zebrafish.
Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left-right asymmetry. In zebrafish, laterality is determined by the motility o...
متن کاملThermal Stress Resistance to Fracture and its Relation to with Resistance to Thermal Fatigue and Shock
Dense Silicon nitride was investigated to determine the effect of its microstructural parameters and densification on thermo-mechanical properties and thermal stress resistance to fracture initiation during a hot or cold mechanical and thermal shock testing. The different materials and microstructures were obtained by changing the parameters such as the type of the powder, additive, forming p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 32 23 شماره
صفحات -
تاریخ انتشار 2013